
MD. MAHADI HASAN SHAON

SOFTWARE ENGINEERING AND PROJECT

MANAGEMENT

Course Code: CSE-306 Credits: 03

CIE Marks: 90

Exam Hours: 03 SEE Marks: 60

SOFTWARE ENGINEERING AND PROJECT MANAGEMENT

3

CLO 1 Describe the fundamental principles of software engineering and project management, including software development life cycle models, project

management methodologies, and software quality assurance techniques.

CLO 2 Understand and analyze the requirements, design, and implementation phases of software development projects using appropriate software

engineering tools and techniques.

CLO 3 Create and implement project plans, schedules, and budgets for software development projects, and effectively manage project resources and risks.

CLO 4 Apply knowledge of software engineering and project management concepts to identify, evaluate, and propose solutions to software development

challenges and issues.

CLO 5 Identify and explain the ethical and professional responsibilities of software engineers and project managers, and apply ethical principles to

software development projects.

Course Learning Outcome (CLOs): After Completing this course
successfully, the student will be able to…

4

SUMMARY OF COURSE CONTENT

 Roger S. Pressmann, “Software Engineering - A Practitioner’s Approach”, McGraw-Hill, latest Edition

 Reference:
Ian Sommerville, “Software Engineering”, Pearson Education, latest Edition

Serial No. SUMMARY OF COURSE CONTENT Hours CLOs

1 Software Development Life Cycle: This topic will cover the different phases of software

development, including requirements gathering, design, implementation, testing,

deployment, and maintenance.

8 CLO1

CLO2

2 Agile Development: This topic will introduce agile methodologies for software

development, including Scrum, Kanban, and Extreme Programming. It will cover topics

such as user stories, sprints, backlog management, and continuous integration.

8 CLO1

CLO2

3 Project Management: This topic will introduce project management techniques, including

project planning, risk management, change management, and resource allocation. It will

also cover project monitoring and control.

8 CLO1

CLO2

4 Software Testing: This topic will cover different types of software testing, including unit

testing, integration testing, system testing, and acceptance testing. It will also cover tools

and techniques for test automation.

8 CLO4

CLO5

5 Software Quality Assurance: This topic will cover different techniques for ensuring

software quality, including code reviews, static analysis, dynamic analysis, and quality

metrics. It will also cover techniques for measuring and improving software

maintainability and reliability.

8 CLO5

Recommended Books:

ASSESSMENT PATTERN

Bloom's Category
Marks (out of 90)

Tests
(45)

Assignments
(15)

Quizzes
(15)

Attendance
(15)

Remember 5 03

Understand 5 04 05

Apply 15 05 05

Analyze 10

Evaluate 5 03 05

Create 5

Bloom's Category Test

Remember 7

Understand 7

Apply 20

Analyze 15

Evaluate 6

Create 5

CIE- Continuous Internal Evaluation (90 Marks)

SEE- Semester End Examination (60 Marks)

Week No. Topics Teaching Learning Strategy(s) Assessment Strategy(s) Alignment to CLO

1

• Introduction to Software Engineering

• Describe SE concepts, history, and

applications.

Lecture, multimedia, group discussion Feedback, Q&A, assessment of LOs CLO1

2

• Software Process Models

• Explain and compare traditional and

agile process models.

Lecture, multimedia, interactive sessions Feedback, Q&A, quizzes CLO2

3

• Requirements Engineering

• Apply requirements elicitation and

specification techniques.

Lecture, multimedia, hands-on practice Mid term Quiz, assessment of LOs CLO3

4

• System Design and Architecture

• Discuss and apply design principles and

patterns.

Lecture, multimedia, interactive sessions Feedback, Q&A, assessment of LOs CLO4

5

• Software Development

• Implement coding standards and best

practices.

Lecture, multimedia, practical examples Midterm Case Study, Home Assignment CLO5

6

• Software Testing

• Explain and apply various testing

strategies and tools.

Lecture, multimedia, interactive sessions
Feedback, Q&A, quizzes, group

discussions
CLO6

7

• Software Project Management

• Manage software projects including

planning, estimation, and scheduling.

Lecture, multimedia, group work Feedback, Q&A, assessment of LOs CLO7

8

• Software Configuration Management

• Use version control systems and

manage software configurations.

Lecture, multimedia, hands-on practice Mid term Quiz , Home Assignment CLO8

Week No. Topics Teaching Learning Strategy(s) Assessment Strategy(s) Alignment to CLO

9

• Software Metrics and Measurement

• Discuss and apply software metrics and

measurement techniques.

Lecture, multimedia, interactive sessions Feedback, Q&A, assessment of LOs CLO9

10

• Software Maintenance and Evolution

• Understand maintenance processes and

challenges.

Lecture, multimedia, problem-solving

sessions
Feedback, Q&A, group discussions CLO9

11

• Software Engineering Ethics

• Discuss ethical issues and professional

responsibilities.

Lecture, multimedia, interactive sessions Final term Quiz, assessment of LOs CLO3

12

• Advanced Topics: Agile Development

• Explore advanced topics and emerging

trends in software engineering.

Lecture, multimedia, practical examples Feedback, Q&A, group discussions. CLO10

13

• Software Security

• Principles of Agile methodologies.

• Key frameworks: Scrum, Kanban, and

XP.

Lecture, multimedia, practical examples Feedback, Q&A, group discussions CLO9

14

• Emerging Trends in Software

Engineering

• AI and machine learning in software

development.

Lecture, multimedia, practical examples
Feedback, Q&A, quizzes, group

discussions
CLO6

15

• Introduction to Object-Oriented

Analysis

• Introduction to OOA.

• Basic user requirements must be

communicated between the customer

and the software engineer,

• Classes must be identified.

Lecture, multimedia, group discussion Feedback, Q&A, assessment of LOs CLO1

16
• Quality Assurance

• Tools for static and dynamic analysis.
Lecture, multimedia, practical examples

Final term Case Study #1, Home

Assignment #1
CLO5

17

• Final Project Presentations

• Students present their projects

demonstrating the application of course

concepts.

• Peer and instructor feedback sessions.

Lecture, multimedia, practical examples Final Term CLO11

WEEK 1

9

WHAT IS SW ENGINEERING ABOUT?

 Project Management

 Configuration Management

 Structured Methodology

 Object Oriented Analysis / Object Oriented Design

 User Interface Design

 Testing and Validation

 Quality Assurance

10

WHY IS SOFTWARE ENGINEERING IMPORTANT?

To avoid costly errors caused by software:

 Lost Voyager Spacecraft (one bad line of code caused failure)

 Several people killed by a radiation machine (no means of catching operator errors)

 Commercial aircraft accidentally shot down during Gulf War (poor user interface)

 Toma Hawk missile defense system cause more damage to Israel than Scud - non-existence of overflow detection

was the source of the problem

11

HISTORICAL PROJECT COST ALLOCATION

12

EARLY ERROR DETECTION

SAVES MONEY

13

SOFTWARE CHARACTERISTICS

 Software is both a product and a vehicle for developing a product.

 Software is engineered not manufactured.

 Software does not wear out, but it does deteriorate.

 Although the industry is moving toward component based construction, most software is still custom-built.

14

FAILURES OVER TIME

Hardware Software

Infant

mortality

Wear out

(Bathtub curve)

Ideal

curve

Change

Increased failure

due to side effects

Actual curve

15

SOFTWARE CRISIS

 Software failures receive a lot more publicity than software engineering success stories.

 The problems that afflict software development are more likely to be associated with how to develop and

support software properly, than with simply building software that functions correctly.

16

SOFTWARE MYTHS – PART 1

 Software standards provide software engineers with all the guidance they need - Learn to use them

 People with modern computers have all the software development tools they need - Need good CASE tools

 Adding people is a good way to catch up when a project is behind schedule - Late addition makes it later

 Giving software projects to outside parties to develop solves software project management problems - Need to
learn how to manage and control software projects

17

SOFTWARE MYTHS – PART 2

 A general statement of objectives from the customer is all that is needed to begin a software project - spend time
to have very good understanding of customer requirements

 Project requirements change continually and change is easy to accommodate in the software design

 Understand the requirements first then write codes. It costs more to change later

 Once a program is written, the software engineer's work is finished

 It is only the beginning

18

SOFTWARE MYTHS – PART 3

 There is no way to assess the quality of a piece of software until it is actually running on some machine. The only

deliverable from a successful software project is the working program.

 Practice formal/peer review

 Software engineering is all about the creation of large and unnecessary documentation not shorter development

times or reduced costs

 Better quality leads to reduced work

19

SOFTWARE ENGINEERING

 A strategy for producing high

quality software.

 It is a layered technology

 Software engineering

encompasses a process,

management techniques,

technical methods, and the use of

tools

 The bedrock is the quality focus

A Quality Focus

Process

Methods

Tools

20

SOFTWARE ENGINEERING

 Process - foundation

 It defines the framework that must be established for effective delivery of software engineering
technology

 A framework for a set of key process areas (KPA)

 KPA form the basis for management control of software projects

 Methods - technical how-to’s for building software

 requirements analysis

 design

 program construction, testing and support

 Tools

 Automation/semi-automation

 CASE/CAD/CAE tools

21

WHAT IS CMMI?

 Capability Maturity Model Integration (CMMI)

 The CMMI model is a collection of best practices from leading engineering

companies.

 It is a Software Engineering Institute’s (SEI) comprehensive process meta-

model

 It has two different representations:

 Continuous - uses capability levels to measure process improvement

 Staged - uses maturity levels to measure organization’s overall maturity

22

THE MATURITY LEVELS (STAGED)

1

2

3

4

5

Process
unpredictable,
poorly controlled,
and reactive

Process characterized
for projects and is often
reactive

Process characterized for
the organization and is
proactive

Process measured
and controlled

Focus on process
improvement

Optimizing

Quantitatively
Managed

Defined

Initial

Managed

Optimizing

Defined

23

THE CAPABILITY LEVELS (CONTINUOUS)

WEEK 2

25

COMMON PROCESS FRAMEWORK

 Framework activities - applicable to

all software projects

 Customer communication

 Planning

 Risk analysis

 Engineering

 Construction and release

 Customer evaluation

 Umbrella activities - applicable across

entire software process

 Project tracking and control

 Technical review

 Quality assurance

 Risk management

 Software configuration management

 Measurements

 Metrics collection

26

SOFTWARE LIFE CYCLE PHASES

 Requirements, analysis, and design phase.

 System design phase.

 Program design phase.

 Program implementation phase.

 Unit testing phase.

 Integration testing phase.

 System testing phase.

 System delivery.

 Maintenance.

27

GENERIC SOFTWARE PROCESS MODELS

 The waterfall or linear sequential model

 Separate and distinct phases of specification and development

 Prototype model

 Requirements are not clear

 Rapid Application Development (RAD) model

 High speed adaptation of linear sequential model

28

THE LINEAR/WATERFALL MODEL

Communication

Project initiation

Requirements

gathering

Planning

Estimating

Scheduling

tracking
Modeling

Analysis

design Construction

Code

Test
Deployment

Delivery

Support

feedback

29

WATERFALL MODEL PROBLEMS

 This model assumes that requirements are well understood

 Inflexible partitioning makes it difficult to respond to changing customer

requirements

 It is often difficult for the customer to state all the requirements explicitly

 A working version of the program will not be available until late in the project

 Example: A complete Java editor delivered at the end of project

30

THE INCREMENTAL MODEL

31

INCREMENTAL DEVELOPMENT

ADVANTAGES

 Deliver the core product first

 Add on / refine features

 Provide a platform for evaluation by user

 Customer value can be delivered with each increment so system functionality
is available earlier

 Early increments act as a prototype to help elicit requirements for later
increments

 Lower risk of overall project failure

 The highest priority system services tend to receive the most testing

 It is particularly useful when staffing is unavailable for a complete
implementation

32

RAPID APPLICATION DEVELOPMENT (RAD)

MODEL

 Characteristics:

 Incremental process model with extremely short development cycle

 High speed adaptation of Waterfall model where rapid development is achieved by

component based construction approach i.e. develop a small component rather than

a system

 Used for information system applications

 Drawbacks:

 Need more resource for large projects

 Need commitment from all parties

 Not suitable for high performance and when technical risk is high

33

RAD MODEL

Business

modeling

Data

modeling

Process

modeling

App

generation

Test &

turnover

Team#1

Business

modeling

Data

modeling

Process

modeling

App

generation

Test &

turnover

Team#2

Business

modeling

Data

modeling

Process

modeling

App

generation

Test &

turnover

Team#3

34

PROTOTYPING

 It is an evolutionary model

 Customer often defines general objectives not detailed input/output and
processing requirements

 Being unsure about

 efficiency of an algorithm

 human-computer interaction

 Often used for identifying requirements

 Throw-away prototype (Risk?)

 Quick planning and modeling is used

 Problems:

 Customer often takes prototype as working software

 Developers often polish prototype as working software

35

THE PROTOTYPING PARADIGM

listen to

customer

customer

test-drives

mock-up

Quick Plan

Modeling

Quick design

Construction

&

Prototype

36

THE COMPONENT ASSEMBLY MODEL

Customer

Evaluation

Engineering

Construction & Release

Risk

AnalysisPlanning

Customer

Communication

build

components

if unavailable

extract

components

if available

put new

components

in library

identify

candidate

components

look up

components

in library

construct

nth iteration

of system

38

WEB ENGINEERING PROCESS MODEL

Architectural

design

Production
Navigation

design

Content

design

Interface

design

WEEK 3

INTRODUCTION

• Why Requirements Matter:

Requirements are the foundation of successful software development. They define what the system must do and

serve as a reference throughout the project lifecycle.

• Challenges in Capturing Requirements:

• Unclear needs from stakeholders.

• Changing requirements.

• Communication gaps between users and developers.

WHAT IS REQUIREMENTS ELICITATION?

• Definition: The process of gathering requirements from stakeholders and understanding their needs.

• Goals:

• Identify functional and non-functional requirements.

• Understand business objectives and constraints.

ELICITATION TECHNIQUES

Interviews:

Purpose: Direct communication with stakeholders.

Best Practices:

Prepare open-ended questions.

Record discussions for reference.

Surveys/Questionnaires:

Purpose: Collect input from a large group.

When to Use: Stakeholders are geographically dispersed.

Workshops:

Purpose: Collaborative discussions to identify requirements.

Outcome: Rapid agreement on critical features.

Observation (Shadowing):

Purpose: Understand user behavior by watching them perform tasks.

Best For: Systems with heavy user interaction.

Prototyping:

Purpose: Create a visual mock-up to clarify requirements.

Outcome: Immediate feedback from users.

Document Analysis:

Purpose: Review existing system documents, manuals, or policies.

When to Use: Projects that build on or replace existing systems.

REQUIREMENTS SPECIFICATION

• Definition: The process of documenting and formalizing requirements into a structured format.

• Key Objectives:

• Ensure requirements are clear, consistent, and testable.

• Serve as a contract between stakeholders and the development team.

PATH ANALYSIS

Web

Application

quality

Usability

Functionality

Reliability

Efficiency

Maintainability

Global site understandability

On-line feedback and help

Interface and aesthetics

Special cases

Search and retrieve

Navigation and browse

User input validation

Correct link

Error recovery

User input validation

Response time performance

Page generation speed

Graphic generation speed

Ease of correction

Adaptability

Extensibility

QUALITY REQUIREMENTS

WEEK 4

IMPORTANCE OF SYSTEM DESIGN AND ARCHITECTURE

Importance of System Design and Architecture

1.Scalability: Ensures the system can handle growth.

2.Performance: Optimizes speed and efficiency.

3.Maintainability: Simplifies updates and bug fixes.

4.Reliability: Builds robust systems that function under various

conditions.

STEPS IN SYSTEM DESIGN AND ARCHITECTURE

Steps in System Design and Architecture

Understand Requirements:

• Functional and non-functional requirements.

Define System Goals:

• Scalability, reliability, performance.

Design Components:

• Identify modules, their roles, and how they interact.

Choose Technologies:

• Based on system needs (e.g., databases, frameworks, programming languages).

Create Diagrams:

• Use architectural diagrams like UML, sequence diagrams, or flowcharts to visualize

the design.

I. Balancing trade-offs between performance and scalability.

II. Adapting to changing requirements.

III. Ensuring compatibility between components.

Challenges in System Design

and Architecture

WEEK 5

Why Coding Standards Matter?
Coding standards ensure consistency, readability, and maintainability across software projects, especially in team

settings.

Why Best Practices are Important?
They help produce high-quality, efficient, and reliable code, minimizing errors and technical debt.

WHAT ARE CODING STANDARDS?

What Are Best Practices in Coding?
Best Practices are proven methods to improve the efficiency and quality of development.

Write Clean Code

I. Follow the principle: “Code is read more often than it is written.”

II. Remove unused variables and functions.

Follow DRY and KISS Principles

DRY (Don’t Repeat Yourself): Reuse code through functions and modules.

KISS (Keep It Simple, Stupid): Avoid over-complicating solutions.

Optimize Performance

I. Avoid unnecessary loops and redundant computations.

II. Use efficient data structures (e.g., HashMaps over arrays for quick lookups).

Test Early and Often

I. Write unit tests to verify functionality.

II. Use automated testing tools like Selenium or JUnit.

Secure Your Code

I. Validate user inputs to prevent SQL injection and XSS attacks.

II. Avoid hardcoding sensitive information like passwords and keys.

TOOLS TO ENFORCE STANDARDS AND BEST PRACTICES

Linters and Formatters:

Python: Pylint, Black.

JavaScript: ESLint, Prettier.

Code Quality Checkers:

SonarQube, Codacy.

Integrated Development Environments (IDEs):

Use IntelliJ IDEA, VS Code, or Eclipse for built-in checks.

BENEFITS OF IMPLEMENTING STANDARDS AND PRACTICES

Benefits of Implementing Standards and Practices

1.Improved Team Collaboration: Everyone writes code in a uniform style.

2.Easier Debugging: Clean and consistent code is easier to understand and fix.

3.Reduced Technical Debt: Prevents accumulation of messy code that

requires later rework.

4.Enhanced Code Reusability: Well-structured code can be reused in other

projects.

5.Increased Project Success Rate: Higher-quality code leads to fewer bugs

and smoother deployments.

Coding Standards

Consistent Naming Conventions:

Use meaningful names (e.g., calculateTotal instead of ct).

Follow established patterns like camelCase for variables and PascalCase for class

names.

Proper Indentation and Formatting:

Use consistent indentation (e.g., 2 or 4 spaces).

Keep lines of code short (preferably <80-100 characters).

Commenting and Documentation:

Write comments to explain why, not just what.

Use tools like Javadoc or Docstrings for formal documentation.

Error Handling:

Use try-catch blocks to handle exceptions gracefully.

Always log errors for debugging purposes.

Version Control and Code Reviews:

Use Git or other version control systems.

Ensure peer reviews for quality assurance.

WEEK 6

TESTING OBJECTIVES

 Testing is the process of executing a program with the intent of finding errors.

 A good test case is one with a high probability of finding an as-yet undiscovered error.

 A successful test is one that discovers an as-yet-undiscovered error.

TESTING PRINCIPLES

 All tests should be traceable to customer requirements.

 Tests should be planned before testing begins.

 80% of all errors are in 20% of the code.

 Testing should begin in the small and progress to the large.

 Exhaustive testing is not possible.

 Testing should be conducted by an independent third party if possible.

SOFTWARE TESTABILITY CHECKLIST - 1

 Operability

 if it works better it can be tested more efficiently

 Observability

 Source code is accessible

 System states and variables are visible or queriable during execution

 Controllability

 if software can be controlled better the it is more that testing can be automated

and optimized

SOFTWARE TESTABILITY CHECKLIST - 2

 Decomposability

 controlling the scope of testing allows problems to be isolated quickly and retested intelligently

 Stability

 the fewer the changes, the fewer the disruptions to testing

 Understandability

 the more information that is known, the smarter the testing can be done

GOOD TEST ATTRIBUTES

 A good test has a high probability of finding an error.

 A good test is not redundant.

 A good test should be best of breed.

 A good test should not be too simple or too complex.

TEST STRATEGIES

 Black-box or behavioral testing

 knowing the specified function a product is to perform and demonstrating correct operation based
solely on its specification without regard for its internal logic

 White-box or glass-box testing

 knowing the internal workings of a product, tests are performed to check the workings of all
possible logic paths

DETAILED TEST CASE DESIGN

 A combination of black box and white techniques are applied depending on the phase of testing -

generally white box at the unit testing level, black box during acceptance testing, and both during

integration and system testing.

Black Box Methods

 Equivalence partitioning

 Boundary value analysis

 Cause Effect graphing

 Error Guessing

White Box Methods

• Statement Coverage

• Branch Coverage

• Condition Coverage

• Branch/Condition Coverage

• Multiple-condition Coverage

BASIS PATH TESTING

 White-box technique usually based on the program flow graph

 Determine the basis set of linearly independent paths (the cardinality of this set is

the program cyclomatic complexity)

 Cyclomatic complexity is a software metric that provides a quantitative measures of

the logical complexity of a program

 Prepare test cases that will force the execution of each path in the basis set.

PATH ANALYSIS

 The number of possible paths through a program
can be determined by considering the control-
flow graph of the program.

 Write tests to exercise all possible paths

A

B

CONTROL STRUCTURE TESTING - 1

 White-box techniques

focusing on control

structures present in the

software

 Condition testing (e.g.

branch testing)

 focuses on testing each

decision statement in a

software module

 it is important to ensure

coverage of all logical

combinations of data

static double calc(int m, int n,
double x) {

 if ((m<1) & (n==0))

 x = x /conv2real(m);

 if ((m==2) | (x>1.0))

 x = x+1.0;

 return x;

}

DATA FLOW TESTING

 selects test paths based according to the locations of

variable definitions and uses in the program (e.g.

definition use chains)

Proc x

 B1;

 do while C1

 if C2

 then

 if C4

 then B4;

 else B5;

 endif;

 else

 if C3

 then B2;

 else B3;

 endif;

 endif;

 enddo

 B6;

End proc;

LOOP TESTING

 Simple Loops

 Skip the loop entirely

 Only one pass through the
loop

 Two passes through the loop

 M passes through the loop

 N-1,n,n+1 passes through
the loop

 Nested Loops

 Start at innermost loop

 Work outward
Fig: Nested loop

TEST CASES

➢ question: when are test cases designed?

➢ hint: most are designed at the same time as the user manual or guide

➢ answer: when the requirements analysis and spec are written not after the code is

perfected

➢ early test cases aim to find bugs i.e. defect testing

➢ later ones are concerned less with defects and more with validation - meeting the

users’ real needs

MAJOR CONCEPTS IN TESTING

 We can consider testing from two main points of view:

 strategies in the testing process:

 black box (functional) testing

 white box (structural) testing

 top down testing

 bottom up testing

 stress testing

 stages in the testing process:

 unit testing

 system testing

 acceptance testing (alpha & beta testing)

 regression testing

COMPARISON TESTING

 Black-box testing for safety critical

systems in which independently

developed implementations of

redundant systems are tested for

conformance to specifications

 Often equivalence class partitioning

is used to develop a common set of

test cases for each implementation

Actual

software

Software

model

compare

Pass

Fail

Input

data

Fig: comparison testing

WEEK 7

MANAGEMENT SPECTRUM

 Effective software project management focus on four P’s:

 People

 Product

 Process

 Project

PEOPLE

 Stakeholders

 Senior managers - define business issues

 Project/technical managers - plan, motivate, organize and control practitioners

 Practitioners - deliver the technical skills i.e. developers

 Customers - specify requirements, have interest in the outcome

 End users - interact with the software

TEAM LEADERS

 Leadership model

 Motivation - encourage
technical people to produce
their best ability

 Organization - mould/invent
existing process for fruitful
outcome

 Ideas or innovation -
encourage people to create
and feel creative

 Managerial Identity - have
confidence and take charge of
the project

 Problem solving -

 diagnose relative technical and

organizational issues and

 systematically structure a

solution or properly motivate

others to develop the solution

 Achievement - optimize

productivity of a project team

 Influence team building - read

people and remain control in

high-stress situation

SOFTWARE TEAM ROLES

Requirements analysis

Integration Testing

System Design

Program Design

Unit Testing

Program Implementation

System Testing

System Delivery

Maintenance

Analysis

Designer

Programmer

Testing team

Trainer

 The best team structure

depends on management

style

 Have trust in one another

 Distribution of skills must

to appropriate to the

problem

 Help create a team that

exhibits cohesiveness

 Competency coupled with

group collaboration is a

critical success factor for

the team

FACTORS AFFECTING TEAM ORGANIZATION

 Difficulty of problem to be solved

 Size of resulting program

 Team lifetime

 Degree to which problem can be modularized

 Required quality and reliability of the system to be built

 Rigidity of the delivery date

 Degree of communication required for the project

COMMUNICATION AND COORDINATION

 Formal, impersonal approaches

 documents, milestones, memos

 Formal interpersonal approaches

 review meetings, inspections

 Informal interpersonal approaches

 information meetings, problem solving

 Electronic communication

 e-mail, bulletin boards, video conferencing

 Interpersonal network

 discussion with people outside project team

SOFTWARE SCOPE

 Context

 How does the software fit into the larger system?

 What constraints are imposed?

 Information objectives

 What customer visible data objects are produced as output

 What data objects are required for input

PROBLEM DECOMPOSITION

 Partition the complex problem into

smaller manageable problems

 Focus is on functionality to be

delivered and the process used to

deliver it

 Example:

Word processor

Editing

File

management

Document

productionEtc.

PROCESS CONSIDERATIONS - 1

 Process model chosen must be appropriate for the:

 customers

 developers

 characteristics of the product

 project development environment

 Project planning begins with melding the product and the process

PROCESS CONSIDERATIONS - 2

 Each function to be engineered must pass though the set of framework activities defined for a software
organization

 Work tasks may vary but the common process framework (CPF) is invariant (e.g. size does not matter)

 Software engineer’s task is to estimate the resources required to move each function though the framework
activities to produce each work product

CUSTOMER COMMUNICATION ACTIVITY

 Develop list of communication issues

 Meet with customer to address clarification issues

 Jointly develop a statement of scope (Statement of Work)

 Review statement of scope/work (SoW) with all concerned

 Modify Software as required

TASKS FOR CUSTOMER COMMUNICATION

 Review customer request

 Plan and schedule formal meeting with customer (regular)

 Conduct research to specify the proposed solution and existing approaches

 Prepare working doc and agenda for the formal meeting

 Conduct the meeting

 Jointly develop mini-scope

 Review SoW with all concerned

 Modify SoW doc as required

PROJECT

 Planning

 Monitoring

 Controlling

MANAGING THE PROJECT

 Start on the right foot

 Maintain momentum

 Track progress

 Make smart decisions

 Conduct a postmortem analysis

5WHH PRINCIPLE

Why? Why is the system being developed?
This focuses a team on the business reasons for

developing the software.

What? What will be done?
This is the guiding principle in determining the

tasks that need to be completed.

When? When will it be completed?
This includes important milestones and the

timeline for the project.

Who? Who is responsible for each function?

This is where you determine which team member

takes on which responsibilities. You may also

identify external stakeholders with a claim in the

project.

Where? Where are they organizationally located?

This step gives you time to determine what other

stakeholders have a role in the project and where

they are found.

How?
How will the job be done technically and

managerially?

In this step, a strategy for developing the software

and managing the project is concluded upon.

How Much? How much of each resource is needed?
The goal of this step is to figure out the amount of

resources necessary to complete the project.

WEEK 8

VERSION CONTROL SYSTEMS

1. Purpose of Version Control

Tracks changes made to files over time.

Allows collaboration among multiple developers.

Facilitates recovery by rolling back to earlier versions.

2. Types of Version Control Systems

Centralized VCS A single repository stored on a server.

Changes are committed to the central server.

Distributed VCS Every developer has a complete local copy of the repository.

Changes can be made locally and later synchronized with others.

3. Key VCS Features

Commit: Save changes to the repository.

Branch: Create isolated environments to work on new features or fixes.

Merge: Integrate changes from different branches.

Revert: Roll back to a previous version of the code.

BEST PRACTICES FOR USING VERSION CONTROL SYSTEMS

1. Commit Often:

1. Make small, frequent commits with clear messages.

2. Use Branching:

1. Separate new features or bug fixes into branches.

3. Merge Carefully:

1. Review and test changes before merging to avoid introducing bugs.

4. Write Clear Commit Messages:

1. Follow a consistent format for easy tracking.

5. Collaborate with Pull Requests:

1. Use tools like GitHub to request reviews and discuss changes before merging.

6. Backup the Repository:

1. Always have a remote repository (e.g., GitHub, GitLab) for disaster recovery.

Managing Software Configurations

➢ Why Configuration Management is Important

•Tracks versions of not just code but also environment settings, database schemas, and

build scripts.

•Ensures consistent deployment across different environments (development, testing,

production).

➢ Tools for Configuration Management

Git: For source code versioning.

Ansible, Chef, Puppet: Automates configuration and deployment of environments.

Docker: Manages containerized environments for consistency across systems.

➢ Configuration Best Practices

1.Use Environment Files:

•Separate configurations (e.g., API keys, URLs) from the codebase.

2.Automate Configuration Updates:

•Use scripts or tools to ensure consistent configurations across environments.

3.Document Configuration Changes:

•Maintain a log of what changed and why, for debugging and audits.

WEEK 9

WHY DO WE MEASURE?

 To characterize

 “How can we characterize the robustness of our system?”

 To evaluate

 “How can we demonstrate we meet our robustness goals?”

 To predict

 “How will the software behave if the number of current transactions is doubled?”

 To improve

 “What is the gap between current and desired performance?”

SOFTWARE METRICS

Information from measurement can be used for:

 Continuous improvement of a process

 Estimation

 Quality control

 Productivity assessment

MEASUREMENTS, MEASURES,

AND INDICATORS

 measurement = action taken

“Count the avg. defects / 1K LOC.”

 measure = a measurement result

“1.2 defects / 1K LOC”

 indicator = comparison (trend)

“v1.1 has .5 fewer defects / 1K LOC”

OUTCOME MEASURES

 Errors noted before delivery

 Errors noted after delivery

 Work products delivered

 Human effort expended

 Calendar time elapsed

 Schedule conformance

 Effort on “umbrella” activities

PROCESS METRICS

 Private process metrics

➢ (e.g. defect rates by individual or module) are known only to the individual or team concerned.

 Public process metrics

➢ enable organizations to make strategic changes to improve the software process.

 Metrics should not be used to evaluate the performance of individuals.

 Statistical software process improvement helps an organization to discover its
strengths and weaknesses.

STATISTICAL SOFTWARE PROCESS

IMPROVEMENT (SSPI)

 Categorize errors by origin

(specification, logic, etc.)

 Estimate cost to correct

 Sort according to frequency

 Estimate cost of each error type

 Find highest-cost problems

 Prioritize debugging efforts

Defects and
Their Origin

ERROR ANALYSIS

 “Fishbone” diagram used to analyze the causes of defects

 The analysis can be used to derive indicators for future improvements

DIRECT MEASURES

 Cost

 Effort applied

 LOC (lines of code)

 Execution speed

 Memory size

 Defects reported

INDIRECT MEASURES

 Functionality

 Quality

 Complexity

 Efficiency

 Reliability

 Maintainability

SIZE-ORIENTED METRICS

 Errors per KLOC

 Defects per KLOC

 $ per KLOC

 Documentation pages per KLOC

 Errors per person-month

 LOC per person-month

 $ per documentation page

IS LOC A GOOD MEASURE?

Lines of code are easily counted, but…

 LOC not necessarily related to quality

 Programming languages differ widely in LOC per functional

requirement

 Difficult to estimate LOC

 There is more to SE than writing code!

WHAT LOC CAN’T MEASURE...

 People factors (team size, skill)

 Problem factors (complexity, change)

 Process factors (techniques, tools)

 Product factors (reliability, performance)

 Resource factors (people, tools)

METRICS FOR SOFTWARE QUALITY

 Software is only as good as the quality of...

 the requirements description

 the design of the solution

 the code / program produced

 the tests used to find errors

 QA = life-cycle task, not just a “finishing” activity

 QA must address process, too!

MEASURING QUALITY

 Correctness

 defects per KLOC?

 errors per inputs processed?

 Maintainability

 mean time to change (MTTC)?

(Note: changes to software vary widely in scope and complexity!)

 Integrity

 assess threats, security of software

SOFTWARE QUALITY METRICS

 Factors assessing software quality come from three distinct points of view (product

operation, product revision, product modification).

 Defect removal efficiency (DRE) is a measure of the filtering ability of the quality

assurance and control activities as they are applied through out the process

framework.

WEEK 10

What is Software Maintenance?

The process of updating and improving software after deployment to fix issues, adapt to

new environments, and enhance functionality.

What is Software Evolution?

The continuous process of software adaptation and enhancement to meet changing user

needs and technological advancements.

IMPORTANCE OF SOFTWARE MAINTENANCE

1. Software is rarely "complete" after its initial release.

2. Maintenance ensures:

Reliability: Fixes bugs to maintain stability.

Relevance: Adapts software to new technologies and user requirements.

Security: Resolves vulnerabilities and prevents exploitation.

TASK OF SOFTWARE MAINTENANCE

Corrective Maintenance:

1. Fixes bugs and defects reported by users or found during operation.

Adaptive Maintenance:

1. Updates software to remain compatible with new hardware, operating systems, or regulations.

2. Example: Updating an app to support the latest iOS version.

Perfective Maintenance:

1. Enhances or improves software functionality based on user feedback.

Preventive Maintenance:

1. Anticipates and addresses potential future issues to improve software reliability.

MAINTENANCE PROCESSES

• Identification and Analysis:

➢ Gather and analyze requests for changes or fixes.

• Impact Assessment:

➢ Evaluate how the change affects the existing system.

➢ Identify dependencies and risks.

• Implementation:

➢ Develop and test the necessary changes.

➢ Follow coding standards and best practices.

• Verification and Testing:

➢ Ensure the software functions correctly after changes.

➢ Test for unintended side effects.

• Release and Deployment:

➢ Deliver the updated version to users.

• Monitoring:

➢ Track the performance and stability of the updated software.

CHALLENGES IN SOFTWARE MAINTENANCE

1. Increasing Complexity:

✓ Over time, software systems become harder to understand and modify.

2. Lack of Documentation:

✓ Poor or outdated documentation makes it difficult to implement changes.

3. Regression Issues:

✓ Fixing one issue may introduce new bugs.

4. Resource Constraints:

✓ Limited budget or time for maintenance tasks.

5. Understanding Legacy Code:

✓ Old or poorly written code can be hard to modify.

6. Changing User Requirements:

✓ Balancing current fixes with evolving user demands.

EFFECTIVE WAYS OF MAINTENANCE

Write Maintainable Code:

Use clean coding practices and follow coding standards.

Maintain Proper Documentation:

Update documentation regularly to reflect changes.

Automate Testing and Deployment:

Use tools like Jenkins or GitLab CI/CD to streamline processes.

Use Version Control:

Track changes and roll back to previous versions when needed.

Regular Code Reviews:

Identify potential issues and ensure consistency.

WEEK 11

What is Software Engineering Ethics and why Engineering

Ethics is important?

MAJOR ETHICAL ISSUES IN SOFTWARE ENGINEERING

 Privacy

Issue: Protecting users' personal information and ensuring data security.

Example: Misusing personal data or allowing unauthorized access to sensitive information.

Responsibility: Engineers must design software to safeguard user privacy and comply with data protection laws.

 Security

Issue: Ensuring software is secure from attacks and vulnerabilities.

Example: Failing to fix known security issues, leading to potential data breaches.

Responsibility: Software engineers must prioritize security during development, identify vulnerabilities, and apply updates promptly.

 Intellectual Property

Issue: Respecting others' intellectual property (IP) rights and ensuring that no plagiarism occurs.

Example: Using copyrighted code without permission or credit.

Responsibility: Engineers should give credit to authors of third-party code and follow licensing agreements.

 Software Quality

Issue: Creating software that is reliable, bug-free, and fit for use.

Example: Releasing software with known defects that can cause harm to users.

Responsibility: Engineers must thoroughly test and ensure software quality before release to avoid errors that can affect users.

RESPONSIBILITIES OF SOFTWARE ENGINEERS

Honesty and Integrity

Responsibility: Software engineers should be truthful about their skills, progress, and the capabilities of the software
they are developing.

Accountability

Responsibility: Engineers must take responsibility for their actions, decisions, and the impact of their work.

Respect for Users and Society

Responsibility: Software engineers should consider how their software affects users and society, avoiding harm and
ensuring accessibility.

Continuous Learning and Professional Development

Responsibility: Engineers should stay updated with new technologies, tools, and ethical standards.

CODE OF ETHICS FOR SOFTWARE ENGINEERS

• Many professional organizations, like the ACM (Association for Computing Machinery) and IEEE, have

established ethical codes that software engineers should follow.

• These codes emphasize principles like public welfare, professional competence, honesty, and integrity.

WEEK 12

AGILE DEVELOPMENT

What is Agile Development?

KEY PRINCIPLES OF AGILE

Agile is based on the Agile Manifesto, which emphasizes:

I. Individuals and Interactions over processes and tools.

II. Working Software over comprehensive documentation.

III. Customer Collaboration over contract negotiation.

IV. Responding to Change over following a plan.

AGILE VS WATERFALL

AGILE METHODOLOGIES

1. Scrum

i. Focuses on delivering software in sprints (short, time-boxed development cycles, usually 2-4 weeks).

ii. Key roles: Scrum Master (facilitator), Product Owner (represents the customer), and Development Team.

iii. Scrum uses ceremonies like Daily Stand-ups, Sprint Planning, Sprint Review, and Sprint Retrospectives.

2. Kanban

i. Focuses on visualizing the workflow and continuously improving efficiency.

ii. Uses a Kanban board to track the status of tasks (To Do, In Progress, Done).

iii. Ideal for teams with changing priorities and continuous work.

3. Extreme Programming (XP)

i. Focuses on software quality and developer collaboration.

ii. Practices include pair programming, test-driven development (TDD), and frequent releases.

BENEFITS AND CHALLENGES OF AGILE DEVELOPMENT

WEEK 13

SOFTWARE

SECURITY

 Most security issues in software systems result from flaws in the code or design of software
system.

• CERT reported over 5000 software vulnerabilities in 2005.

 These flaws are the result of inadequate consideration of security during requirements analysis, design,
implementation, and testing of software systems.

• Production of trustworthy software has become an issue.

 The need for trustworthy systems result from the growth in complexity and connectivity of modern
software systems.

 Trustworthy software relies on the education of computer scientists and

software engineers.

 Most threats to our software are with anti-virus software on the host, with

firewalls and intrusions prevention systems.

 Agile software development has been used by industry to create a more

flexible and lean software development process.

WHAT IS SOFTWARE SECURITY

 Focus is on how security vulnerabilities arise from poor software engineering practices.

 Both coding bugs and architectural flaws introduced as sources of software vulnerabilities

Expected outcome:

 Clear understanding of the need for software security and how software security is different from security features

like access control or cryptography.

THREATS AND VULNERABILITIES

 Case studies of software security exploits were studied.

 By this, the nature of threats and vulnerabilities could be understood.

 The case studies were selected mostly from web applications.

 Attack patterns were studied, which describe general methods attackers use to exploit software vulnerabilities.

Expected outcome:

 Understand common threats to web applications and common vulnerabilities written by developers.

RISK MANAGEMENT

 Security needs to be understood in terms of risk management.

 It is impossible to eliminate all risks, risks evolve with time.

 Data flow diagrams are constructed to describe architecture of application and to document trust levels and system

boundaries

 These diagrams show potential entry points into the application

Expected outcome:

 Create a risk model of a web application, ranking and detailing the risks to the system’s assets.

SECURITY REQUIREMENTS

 Security requirements are based on the risk model for the application.

 Security requirements describe what software should not do.

 Attackers frequently do what the application designers assume that users never do in order to compromise an

application.

 In order to understand their assumptions in designing a system, system architects need to think like an attacker.

Expected outcome:

 Construct, document, and analyze security requirements with abuse cases and constraints.

AN AGILE SECURITY PROCESS

 Combining the most

compatible and beneficial

activities, shown in the

picture, with an Agile

process.

 This create an Agile

security process that

implements the most cost

effective benefits from

the three SE process.

AN AGILE SECURITY PROCESS

The three security engineering processes are:

➢ Cigatel’s Touchpoints

➢ Microsoft SDL

➢ Common Criteria

 To better integrate the SE activities, move them from their recommended phase and place
them with the development team.

 The activity can be performed during a work package.

 For example, Abuse Cases are moved to the design phase and the coding developers should
write them instead of the requirement engineers.

AN AGILE SECURITY PROCESS

 In the release phase, Repository Improvement fits very well with the retrospective meeting

that development team performs at the end of a work sprint.

 Integrating these two activities is made easier by moving them to a more developer heavy

phase.

 During requirement analysis, the security enhanced Agile process primary focus is:

• To write specific requirements for security goals.

• These will aid both programmers and testers to know what goals are required and need verification.

 Having better security specified user stories makes it easier to write, design safe software.

 The main focus for the improvements are with the developers teams and their work sprints.

KEY AGILE FRAMEWORKS FOR SOFTWARE DEVELOPMENT

Scrum

Scrum is an Agile framework that breaks down the software development process into sprints—time-boxed periods

(usually 2-4 weeks) where specific features or tasks are completed.

Kanban

Kanban focuses on continuous delivery by visualizing the work process using a Kanban board, where tasks flow through

columns.

Extreme Programming (XP)

XP focuses on high-quality code and customer satisfaction by practicing frequent releases, pair programming, and

test-driven development (TDD).

WEEK 14

EMERGING TRENDS IN SOFTWARE ENGINEERING

 Technology developments occur:

 To adapt to new environments

 To respond to new challenges

 Few important developments that have occurred over the last
decade or so:

 Desktops have become more powerful and at the same time more
affordable.

 Internet has become widely accepted.

 Mobile computing.

 Outsourcing has become prevalent.

Software market has two parts:

Products (General purpose software)

Services (custom software)

Total business – appx. $1 Trillion

Half in products and half services

Services segment is growing fast

 SE goal is to develop software to satisfy
user needs.

Either generic or one-off.

Customer needs are considered sacrosanct
and fixed:

Vendor has to find the solution.

BACKGROUND: A CONSTRAINT ON SOFTWARE
ENGINEERING PROCESS

Business Process

Implementation in IT

Time required = T1

Change in Business Process

Change in the IT solution
supporting

the business process

Time required = T2

DESIRED GOALS

 A. Reduce T1 (and improve quality)
 B. Reduce T2

 A requires:

 Process should efficiently capture requirements of the business
and then efficiently convert it to code.

 B requires:

 Implementation should be such that business process changes
can be easily accommodated in the software solution.

CHALLENGES BEING FACED

 Delivery time requirements are shortening:

High business velocity requires this.

 Software is becoming a bottleneck in

implementing business process changes.

 Businesses are getting tired of software cost,

late deliveries, poor quality, risk,…

Hardware and software cost differentials are

becoming more and more glaring.

CHALLENGES BEING FACED

 Software sizes are further increasing.

 How software is to be effectively developed in
following contexts is not clear:

 Distributed platforms

 Working with Internet

 Distributed development teams

NOTICEABLE SOFTWARE ENGINEERING
TECHNOLOGY TRENDS

Following software engineering trends

are easily noticeable:

Client-server (or Component-based)

development

 Service-Oriented Architecture (SOA)

 Software as a Service (SaaS)

ARTIFICIAL INTELLIGENCE (AI) AND MACHINE LEARNING (ML)

IN SOFTWARE DEVELOPMENT

Artificial Intelligence (AI): AI refers to the simulation of human intelligence in machines that are programmed to think

and learn like humans.

Machine Learning (ML): ML is a subset of AI that involves training algorithms to recognize patterns in data and make

predictions or decisions based on that data.

❑ AI/ML in Software Development

 Code Generation and Automation:

AI-powered tools can automatically generate code, reducing manual effort and speeding up development.

 Bug Detection and Code Review:

Machine learning models can analyze code and identify potential bugs or security vulnerabilities.

 Predictive Analytics:

AI can predict project timelines, risks, and outcomes by analyzing historical data from past projects.

 Intelligent Testing:

AI and ML can automate testing processes by generating test cases, predicting which parts of the system need testing, and even

simulating user behavior.

WEEK 15

OBJECT-ORIENTED ANALYSIS

(OOA) TASKS

 Basic user requirements must be communicated between the customer and the software engineer

 Classes must be identified (e.g. define attributes and methods)

 Specify class hierarchy

 Represent object-to-object relationships

 Model object behavior

 Reapply 1 through 5 iteratively until model is complete

OOA GENERIC STEPS

 Elicit (draw out) customer requirements for system

 Identify scenarios or use cases

 Select classes and objects using basic requirements as a guide

 Identify attributes and operations for each system object

 Define structures and hierarchies that organize classes

 Build object-relationship model

 Build object-behavior model

 Review OOA model against use-cases (scenarios)

GENERIC OOA MODEL - 1

 Static view of semantic classes

 classes based on semantics of customer requirements

 Static view of attributes

 attributes describe classes

 suggest operations relevant to classes

 Static view of relationships

 represent relationships in a way that allows identification of operations and the design of a
messaging approach

GENERIC OOA MODEL - 2

 Static view of behaviors

 behaviors accommodating system usage scenarios implemented by sequences of operations

 Dynamic view of communication

 among objects

 based on events that cause state transitions

 Dynamic view of control and time

 describe the nature and timing of events causing state transitions

UNIFIED MODELING LANGUAGE (UML) ELEMENTS -

1

 In UML, a system is represented using five different views

 User model view

 describes usage scenarios from the end-user's perspective

 Structural model view

 static structure of data and functionality is modeled (classes, objects, relationships)

 Behavioral model view

 represents dynamic system aspects

 interactions or collaborations between structural elements in the user and structural models

UNIFIED MODELING LANGUAGE (UML) ELEMENTS -

2

 Implementation model view

 representing the structural and behavioral aspects of the system as they are to be built

 Environment model view

 representation of the structural and behavioral aspects of the environment in which the system will be implemented

UML USE CASE (TOGETHERSOFT)

UML CLASS MODEL (TOGETHERSOFT)

SIMPLIFIED OOA

 Class or Object Modeling

 build an object model similar to an ER diagram

 Dynamic or Behavior Modeling

 build a finite state machine type model

 Functional Modeling

 similar to data flow diagram

OOA BEHAVIORAL MODEL CONSTRUCTION

 Evaluate all use-cases to understand the sequence of interaction within the system

 Identify events that drive the interaction sequence and how events relate to specific
objects

 Create an event-trace for each use-case

 Build a state transition diagram for the system

 Review the object behavior model to verify accuracy and consistency

BEHAVIORAL MODEL

WEEK 16

SOFTWARE QUALITY ASSURANCE

QUALITY MANAGEMENT

 Quality management encompass

 A software quality assurance (SQA) process

 Specify quality assurance and quality control tasks (formal technical review and multi-tiered testing strategy)

 Effective software engineering practices (methods and tools)

 Control of all software work products and changes made to them

QUALITY CONCEPTS

 Quality of design

 refers to characteristics designers
specify for the end product to be
constructed

 Quality of conformance

 degree to which design specifications
are followed in manufacturing the
product

 Quality control

 series of inspections, reviews, and tests
used to ensure conformance of a work
product to its specifications

 Quality assurance

 auditing and reporting procedures used
to provide management with data
needed to make proactive decisions

QUALITY COSTS

 Prevention costs

 quality planning, formal technical reviews, test equipment, training

 Appraisal costs - activities to gain insight into product condition

 in-process and inter-process inspection, equipment calibration and maintenance, testing

 Failure costs

 rework, repair, failure mode analysis

 External failure costs

 complaint resolution, product return and replacement, help line support, warranty work

STATISTICAL QUALITY ASSURANCE

 Information about software defects is collected and categorized

 Each defect is traced back to its cause

 Using the Pareto principle (80% of the defects can be traced to 20% of the causes) isolate the "vital few" defect

causes

 Move to correct the problems that caused the defects

SOFTWARE RELIABILITY

 Defined as the probability of failure free operation of a computer program in a specified environment for a
specified time period

 Can be measured directly and estimated using historical and developmental data (unlike many other software
quality factors)

 Software reliability problems can usually be traced back to errors in design or implementation.

SQA PLAN – 1

 Management section

 describes the place of SQA in the structure of the organization

 Documentation section

 describes each work product produced as part of the software process

 Standards, practices, and conventions section

 lists all applicable standards/practices applied during the software process and any
metrics to be collected as part of the software engineering work

SQA PLAN - 2

 Reviews and audits section

 provides an overview of the approach used in the reviews and audits to be conducted during the
project

 Test section

 references the test plan and procedure document and defines test record keeping requirements

 Problem reporting and corrective action section

 defines procedures for reporting, tracking, and resolving errors or defects, identifies organizational
responsibilities for these activities

 Other

 tools, SQA methods, change control, record keeping, training, and risk management

SIX SIGMA FOR SOFTWARE ENGINEERING

 6 - most widely used statistical quality assurance in industry

 Popularized by Motorola in 1980s

 Six sigma is derived from six standard deviation - 3.4 instances (defects) per million occurrences

 It defines 3 core concepts

SIX SIGMA CORE STEPS

 Define customer requirements, deliverables, and project goals via well defined

methods of customer communication

 Measure the existing process and its output to determine current quality

performance (collect defect metrics)

 Analyze defect metrics and determine the vital few causes

SIX SIGMA ADDITIONAL STEPS

 If an existing software process is in place but

requires improvements:

 Improve the process by eliminating the root

causes of defects

 Control the process to ensure that future work

does not reintroduce the causes of defects

 It is also known as DMAIC (define, measure,

analyze, improve and control)

 If the organisation is developing a process use:

 Design the process to (1) to avoid the root

cause of defects and (2) to meet customer

requirements

 Verify that the process model will, in fact, avoid

defects and meet customer requirements

 This variation is known as DMADV (define,

measure, analyze, design and verify)

ISO 9000 QUALITY STANDARDS

 ISO 9000 describes generic quality standards applicable to any
business

 ISO 9001:2000 is the quality standard that applies to software
engineering

 ISO 9001:2000 20 requirements that must be present for an effective
quality assurance system

 ISO 9000-3 have been developed to help interpret the standard for
use in the software process

 Need this certification of quality assurance to work in certain
countries

WEEK 17

FINAL PROJECT PRESENTATIONS

 Students present their projects demonstrating the application of course concepts.

 Peer and instructor feedback sessions.

THANK YOU

	Slide 1
	Slide 2: Software Engineering and Project Management
	Slide 3
	Slide 4: Summary of Course Content
	Slide 5: Assessment Pattern
	Slide 6
	Slide 7
	Slide 8: Week 1
	Slide 9: What is SW Engineering about?
	Slide 10: Why is software engineering important?
	Slide 11: Historical Project Cost Allocation
	Slide 12: Early Error Detection Saves Money
	Slide 13: Software Characteristics
	Slide 14: Failures Over Time
	Slide 15: Software Crisis
	Slide 16: Software Myths – Part 1
	Slide 17: Software Myths – Part 2
	Slide 18: Software Myths – Part 3
	Slide 19: Software Engineering
	Slide 20: Software Engineering
	Slide 21: What is CMMI?
	Slide 22: The Maturity Levels (Staged)
	Slide 23: The Capability Levels (Continuous)
	Slide 24: Week 2
	Slide 25: Common Process Framework
	Slide 26: Software Life Cycle Phases
	Slide 27: Generic software process models
	Slide 28: The Linear/Waterfall Model
	Slide 29: Waterfall model problems
	Slide 30: The Incremental Model
	Slide 31: Incremental development advantages
	Slide 32: Rapid Application Development (RAD) Model
	Slide 33: RAD Model
	Slide 34: Prototyping
	Slide 35: The prototyping paradigm
	Slide 36: The component assembly model
	Slide 38: Web Engineering Process Model
	Slide 39: Week 3
	Slide 40: Introduction
	Slide 41: What is Requirements Elicitation?
	Slide 42: Elicitation Techniques
	Slide 43: Requirements Specification
	Slide 44: Path Analysis
	Slide 45: Week 4
	Slide 46: Importance of System Design and Architecture
	Slide 47: Steps in System Design and Architecture
	Slide 48
	Slide 49: Week 5
	Slide 50
	Slide 51: What Are Coding Standards?
	Slide 52
	Slide 53: Tools to Enforce Standards and Best Practices
	Slide 54: Benefits of Implementing Standards and Practices
	Slide 55: Coding Standards
	Slide 56: Week 6
	Slide 57: Testing Objectives
	Slide 58: Testing Principles
	Slide 59: Software Testability Checklist - 1
	Slide 60: Software Testability Checklist - 2
	Slide 61: Good Test Attributes
	Slide 62: Test Strategies
	Slide 63: Detailed Test Case Design
	Slide 64: Basis Path Testing
	Slide 65: Path Analysis
	Slide 66: Control Structure Testing - 1
	Slide 67: Data Flow Testing
	Slide 68: Loop Testing
	Slide 69: Test Cases
	Slide 70: Major Concepts in Testing
	Slide 71: Comparison Testing
	Slide 72: Week 7
	Slide 73: Management Spectrum
	Slide 74: People
	Slide 75: Team Leaders
	Slide 76: Software Team Roles
	Slide 77: Factors Affecting Team Organization
	Slide 78: Communication and Coordination
	Slide 79: Software scope
	Slide 80: Problem decomposition
	Slide 81: Process Considerations - 1
	Slide 82: Process Considerations - 2
	Slide 83: Customer Communication Activity
	Slide 84: Tasks for Customer Communication
	Slide 85: Project
	Slide 86: Managing the Project
	Slide 87: 5WHH Principle
	Slide 88: Week 8
	Slide 89: Version Control Systems
	Slide 90: Best Practices for Using Version Control Systems
	Slide 91: Managing Software Configurations
	Slide 92: Week 9
	Slide 93: Why Do We Measure?
	Slide 94: Software Metrics
	Slide 95: Measurements, Measures, and Indicators
	Slide 96: Outcome Measures
	Slide 97: Process metrics
	Slide 98: Statistical Software Process Improvement (SSPI)
	Slide 99
	Slide 100: Error Analysis
	Slide 101: Direct Measures
	Slide 102: Indirect Measures
	Slide 103: Size-Oriented Metrics
	Slide 104: Is LOC a Good Measure?
	Slide 105: What LOC Can’t Measure...
	Slide 106: Metrics for Software Quality
	Slide 107: Measuring Quality
	Slide 108: Software Quality Metrics
	Slide 109: Week 10
	Slide 110
	Slide 111: Importance of Software Maintenance
	Slide 112: Task of Software Maintenance
	Slide 113: Maintenance Processes
	Slide 114: Challenges in Software Maintenance
	Slide 115: Effective ways of Maintenance
	Slide 116: Week 11
	Slide 117
	Slide 118: Major Ethical Issues in Software Engineering
	Slide 119: Responsibilities of Software Engineers
	Slide 120: Code of Ethics for Software Engineers
	Slide 121: Week 12
	Slide 122: Agile Development
	Slide 123: Key Principles of Agile
	Slide 124: Agile vs Waterfall
	Slide 125: Agile Methodologies
	Slide 126: Benefits and Challenges of Agile Development
	Slide 127: Week 13
	Slide 128: Software security
	Slide 129
	Slide 130
	Slide 131: What is Software Security
	Slide 132: Threats and Vulnerabilities
	Slide 133: Risk Management
	Slide 134: Security Requirements
	Slide 135: An Agile Security Process
	Slide 136: An Agile Security Process
	Slide 137: An Agile Security Process
	Slide 138: Key Agile Frameworks for Software Development
	Slide 139: Week 14
	Slide 140: Emerging Trends in Software Engineering
	Slide 141
	Slide 142
	Slide 143: Background: A Constraint on Software Engineering Process
	Slide 144: Desired Goals
	Slide 145: Challenges Being Faced
	Slide 146: Challenges Being Faced
	Slide 147: Noticeable Software Engineering Technology Trends
	Slide 148: Artificial Intelligence (AI) and Machine Learning (ML) in Software Development
	Slide 149
	Slide 150: Week 15
	Slide 151: Object-Oriented Analysis (OOA) Tasks
	Slide 152: OOA Generic Steps
	Slide 153: Generic OOA Model - 1
	Slide 154: Generic OOA Model - 2
	Slide 155: Unified Modeling Language (UML) Elements - 1
	Slide 156: Unified Modeling Language (UML) Elements - 2
	Slide 157: UML Use Case (TogetherSoft)
	Slide 158: UML Class Model (TogetherSoft)
	Slide 159: Simplified OOA
	Slide 160: OOA Behavioral Model Construction
	Slide 161: Behavioral Model
	Slide 162: Week 16
	Slide 163: Software Quality Assurance
	Slide 164: Quality Management
	Slide 165: Quality Concepts
	Slide 166: Quality Costs
	Slide 167: Statistical Quality Assurance
	Slide 168: Software Reliability
	Slide 169: SQA Plan – 1
	Slide 170: SQA Plan - 2
	Slide 171: Six Sigma for Software Engineering
	Slide 172: Six Sigma Core Steps
	Slide 173: Six Sigma Additional Steps
	Slide 174: ISO 9000 Quality Standards
	Slide 175: Week 17
	Slide 176: Final Project Presentations
	Slide 177: Thank You

